Maximization of Non-Monotone Submodular Functions

نویسنده

  • Jennifer Gillenwater
چکیده

A litany of questions from a wide variety of scientific disciplines can be cast as non-monotone submodular maximization problems. Since this class of problems includes max-cut, it is NP-hard. Thus, general purpose algorithms for the class tend to be approximation algorithms. For unconstrained problem instances, one recent innovation in this vein includes an algorithm of Buchbinder et al. (2012) that guarantees a 1⁄2 approximation to the maximum. Building on this, for problems subject to cardinality constraints, Buchbinderet al. (2014) o_er guarantees in the range [0:356; 1⁄2 + o(1)]. Earlier work has the best approximation factors for more complex constraints and settings. For constraints that can be characterized as a solvable polytope, Chekuri et al. (2011) provide guarantees. For the online secretary setting, Gupta et al. (2010) provide guarantees. In sum, the current body of work on non-monotone submodular maximization lays strong foundations. However, there remains ample room for future algorithm development. Disciplines Computer Engineering | Computer Sciences Comments MS-CIS-14-01 This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/988 Maximization of Non-Monotone Submodular Functions Jennifer Gillenwater

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximization of Submodular Set Functions

In this technical report, we aim to give a simple yet detailed analysis of several various submodular maximization algorithms. We start from analyzing the classical greedy algorithm, firstly discussed by Nemhauser et al. (1978), that guarantees a tight bound for constrained maximization of monotonically submodular set functions. We then continue by discussing two randomized algorithms proposed ...

متن کامل

Non-Monotone Adaptive Submodular Maximization

A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies f...

متن کامل

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...

متن کامل

Constrained Maximization of Non-Monotone Submodular Functions

The problem of constrained submodular maximization has long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of nonmonotone submodular maximization is not as well understood: the first approximation algorithms even for unconstrainted maximization were given by Feige et al. [FMV07]. More recently, Lee et al. [LMNS09] ...

متن کامل

Constrained Robust Submodular Optimization

In this paper, we consider the problem of constrained maximization of the minimum of a set of submodular functions, in which the goal is to find solutions that are robust to worst-case values of the objective functions. Unfortunately, this problem is both non-submodular and inapproximable. In the case where the submodular functions are monotone, an approximate solution can be found by relaxing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014